
Information-theoretic Classification Accuracy: A Criterion

that Guides Data-driven Combination of Ambiguous

Outcome Labels in Multi-class Classification

Shandong Mathematical Society

Annual Academic Conference

Chihao Zhang

Janary 4, 2025

Acamdemy of Mathmatics and Systems Science, CAS



Background

• Outcome labeling ambiguity and subjectiveness are ubiquitous

– Common in biomedical applications, e.g., disease diagnosis/prognosis

– Data are inherently noisy

– Labels may be mislabeled or labeled inconsistently by different graders [KGR+18]

• Ambiguous outcome labels would inevitably deteriorate prediction accuracy
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Motivation example I

• Case: Train a classifier on partial/low-quality data annotated with

full/high-quality data.

• Problem: Uncertainty about whether the available information can sufficiently

predict classes.
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Motivating example II
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Motivating example II
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An ad hoc solution: combining ambiguous outcome labels

Boost accuracy by combining ambiguous outcome labels

• Class combination πK : [K0] → [K ] where K < K0

π−1
3 (1) = {1}, π−1

3 (2) = {2, 3}, π−1
3 (3) = {4}

• Given the training data Dt , a classification algorithm C,
and a class combination πK , denote the trained

classifier by ϕC,Dt
πK

Problems:

• Loosing prediction resolution

• Ad hoc, lacking a principled method
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Trade-off between classification accuracy and resolution

Classification accuracy can be boosted at the cost of loosing prediction resolution

– Combining all outcome labels into one, we obtain a 100% accurate classifier

A principled method is called to balance the trade-off:

– How to characterize the “resolution”?

– How to properly balance the accuracy and resolution?

We proposed a criterion to guide class combination from an information-theoretic

perspective
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Observation: entropy of outcome label distribution characterizes the resolution

For balanced classes:

the larger the class number,

the higher the resolution

Given the number of classes:

the more balanced,

the higher the resolution
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Information-theoretic classification accuracy (ITCA)

Definition of ITCA
Given class combination πK , training data Dt , evaluation data De , and classification

algorithm C =⇒ classifier ϕC,Dt
πK

p̂k0 := 1I(Yi = k0)/n indicates the proportion of k0-th original class in Dt ∪ De

ITCA(πK ;Dt ,De , C)

:=
K∑

k=1

−
 ∑

k0∈π−1
K (k)

p̂k0

 log

 ∑
k0∈π−1

K (k)

p̂k0


︸ ︷︷ ︸

contribution of the combined class k
to the entropy of πK (Y )

·

∑
(Xi ,Yi )∈De

1I(ϕC,Dt
πK

(Xi ) = k, πK (Yi ) = k)

1
∨ ∑

(Xi ,Yi )∈De

1I(πK (Yi ) = k)︸ ︷︷ ︸
conditional accuracy of ϕC,Dt

πK

in the combined class k

,

• ITCA is entropy-weighted out-of-sample prediction accuracy

• ITCA is also a class-accuracy-weighted entropy
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Exhaustive search is prohibitive even K0 is moderate

Table 1: The number of allowed class combinations πK ’s given K0

Label K0

Type 2 4 6 8 12 16

Nominal 1 14 202 4139 4213596 ∼ 1010

Ordinal 1 7 31 127 2047 32767

Two heuristic search strategies

• Greedy search: starting from πK0 , in the k-th round, find the best combination

among the allowed πK−k ’s that maximizes the ITCA

• Breadth-first search: track all the combination that can improve ITCA at each

round
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Alternative criteria that may guide class combination

Adjusted accuracy (AAC)

AAC :=
1

|De |
∑

(Xi ,Yi )∈De

1I
(
ϕ
C,Dr

t
πK (Xi ) = πK (Yi )

)
∑

k0∈π−1
K (πK (Yi ))

p̂k0

Combined Kullback-Leibler divergence (CKL)

CKL := DKL

(
F̂πK ,De || F̂πK0

,De

)
+ DKL

(
F̂
ϕ
C,Dt
πK

,De
|| F̂πK ,De

)
Prediction entropy (PE)

PE :=
K∑

k=1

−

∑
(Xi ,Yi )∈De

1I
(
ϕC,Dt
πK

(Xi ) = πK (Yi ) = k
)

|De |

· log


∑

(Xi ,Yi )∈De

1I
(
ϕC,Dt
πK

(Xi ) = πK (Yi ) = k
)

|De |



Commonly used criteria

• Accuracy (ACC)

Classification

• Mutual Information

(MI) Clustering
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Simulation studies



ITCA finds the true class combination with a clear gap (simulated data)

Simulated data with K0 = 6 observed classes; K∗ = 5 true classes; C = LDA
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ITCA finds the true class combination with a clear gap (the Iris data)

K∗ = 3 classes (setosa, versicolor, and virginica); the setosa class is linearly separable from the

other two classes; K0 = 4 (the setosa class is randomly split into two equal-sized classes)
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ITCA finds the true combination at the most cases

Criterion

# successes Average Max # successes Average Max

# datasets Hamming Hamming # datasets Hamming Hamming

LDA RF

ACC 6/127 2.54 6 7/127 2.53 6

MI 7/127 2.51 6 11/127 2.33 6

AAC 15/127 2.02 6 15/127 1.98 6

CKL 3/127 3.68 6 5/127 2.87 5

PE 101/127 0.47 4 94/127 0.46 3

ITCA 120/127 0.12 3 120/127 0.08 2

Table 2: The performance of six criteria on the 127 simulated datasets with K0 = 8
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Effectiveness of the greedy and BFS search strategies

Strategy
# successes Average Max Average # class

# datasets Hamming Hamming combinations examined

Exhaustive 120/127 0.13 3 127.00

Greedy search 119/127 0.12 3 22.64

BFS 119/127 0.10 2 53.98

Greedy (pruned) 119/127 0.10 2 12.01

BFS (pruned) 119/127 0.10 3 27.41

Table 3: Performance of ITCA using five search strategies and LDA on the 127 simulated

datasets with K0 = 8. ITCA failed in seven cases where K∗ = 2 and I will give a theoretical

explanation later.
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Using clustering algorithms to guide class combination

While ITCA provides a powerful data-driven approach for combining ambiguous

classes, one may consider using a clustering algorithm

• K -means-based class combination: compute the k0-th class center

(
∑n

i=1 1I(Yi = k0)Xi ) /(
∑n

i=1 1I(Yi = k0)) ; use the K -means clustering to cluster

the K0 class centers into K ∗ clusters

• Spectral-clustering-based class combination: compute the K ∗-dimensional

spectral embeddings of X1, . . . ,Xn; apply the K -means-based class combination

approach

• Hierarchical-clustering-based class combination: compute the K0 class

centers; apply the hierarchical clustering to the centers

For all clustering-based class combination approaches, K ∗ must be predefined
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ITCA outperforms clustering-based class combination approaches

Only ITCA (C = Gaussian kernel SVM) finds the true combination in all cases
16



Some theoretic remarks



Population-level ITCA (p-ITCA)

We define the population-level ITCA (p-ITCA) of πK as

p-ITCA(πK ;Dt , C) :=
K∑

k=1

[−IP(πK (Y ) = k) log IP(πK (Y ) = k)]·IP(ϕC,Dt
πK

(X ) = πK (Y )|πK (Y ) = k)

Definition (oracle classifier)
Given K0 observed classes, let S ⊆ [K0] be a set of classes that share the same

distribution. A classifier ϕ∗
πK0

is an oracle classifier if that for any (Xi ,Yi ) where

Yi ∈ S , ϕ∗
πK0

predicts the label s ∈ S by Multi(1, [|S |], [ps/
∑

s∈S ps ])

Definition (class-combination curve)
K0 > 2, there exist two classes S = {1, 2} that follow the same distribution. The other
classes’ distributions are different from S . πK0−1 only combines class 1 and 2 into one
class

CC(πK0−1||πK0 ;Dt , C) := {(p1, p2) ∈ Ω : p-ITCA(πK0 ;Dt , C, p1, p2) = p-ITCA(πK0−1;Dt , C, p1, p2)}

is the class-combination curve 17



Different classification algorithms induce different CC-curves

Blue area means that p-ITCA increase after combination (orange means decrease), purple

indicates the boundary.

• p-ITCA will not combine classes 1 and 2 when the proportions of the combined

class is large

• LDA has a much smaller chance to discover the true class combination
18



Enhance the ability of LDA to discover the true combination

Soft LDA
Soft assigns label to X randomly

with a multinomial distribution

Mult(1, softmax(δ)) where δ is the

decision score where delta is the

decision score δ = (δ1, · · · , δK )

• We can show that Soft LDA

is the same as the oracle

classification algorithm when

||µ||/σ2 → ∞
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The choice of classification algorithm

• ITCA is adaptive to all classification algorithms

• ITCA is comparable across different classification algorithms

• Users can choose the most suitable classification algorithms for different tasks

– Prediction: a strong classification algorithm that maximizes ITCA

– Detection of similar classes: a weak classification algorithm (e.g., LDA)
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Applications



ITCA refines prognosis of rehabilitation outcomes of TBI patients

• Rehabilitation outcomes of traumatic brain injury (TBI) patients is costly

• Predict rehabilitation outcomes (17 FIMs, each is a K0 = 7 level outcome) for

individual patients from their admission features

• The prediction accuracy of the trained classifier (C = RF) on the original data is

relatively low
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Experts’ suggestion vs. ITCA guided class combination

ITCA consistently leads to more balanced levels and a more significant improvement from

the best guess (assigning every patient to the level that has the most patients)
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ITCA induces multi-layer prediction frameworks

For each K = 1, . . . ,K0, choose the combination πK that maximizes the ITCA

• Nested-search-based: classes in each layer are combined from the classes in the

layer below

• Exhaustive-search-based: no nested constraint

(1, 2, 3, 4, 5, 6, 7)

Greedy-search-based
Exhaustive-

search-based

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 7

{(1, 2, 3, 4, 5, 6, 7)}{(1, 2, 3, 4, 5, 6, 7)}

{(1, 2, 3, 4), (5, 6, 7)}{(1, 2), (3, 4, 5, 6, 7)}

{1, (2, 3, 4), (5, 6, 7)}{(1, 2), (3, 4, 5), (6, 7)}

{(1, 2), (3, 4), 5, (6, 7)}{(1, 2), (3, 4), 5, (6, 7)}

{1, 2, (3, 4), 5, (6, 7)}{1, 2, (3, 4), 5, (6, 7)}

{1, 2, (3, 4), 5, 6, 7}{1, 2, (3, 4), 5, 6, 7}

{1, 2, 3, 4, 5, 6, 7}{1, 2, 3, 4, 5, 6, 7}
1 2 3 4 5 6 7

(3, 4, 5)

(6, 7)

(3, 4, 5, 6, 7)

s-ITCA guided combination

(3, 4)

(1, 2)
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ITCA boosts the prediction of glioblastoma cancer patients’ survival time

Glioblastoma cancer is one of the most aggressive

cancer types

• Task: Predict patients’ survival time

• Approach 1: survival analysis (Cox regression)

• Approach 2: discretize survival time
(classification)

– Challenge: How to define survival time

intervals?

– Solution: Discretize survival time into small

intervals and combine them with ITCA

ITCA (C = NN) vs. ACC vs.

Kendall’s tau
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ITCA-guided classification model achieves the best performance

• We use a 3 layered neural network (NN) or logistic regression (LR) with a

modified cross entropy loss function for censored data

• K0 = 12

• ITCA finds K = 7 for LR and NN (with different πK ’s)

Model ITCA Kendall’s tau p-value

NN (K0 survival time intervals) 0.8565± 0.0410 0.6547± 0.0181 2.11e-14

LR (K0 survival time intervals) 0.6354± 0.0620 0.6024± 0.0244 1.64e-11

NN (ITCA-guided combined intervals) 0.9623± 0.0464 0.6855± 0.0178 1.27e-15

LR (ITCA-guided combined intervals) 0.8196± 0.0222 0.6236± 0.0240 5.34e-10

Cox regression (risk scores) - 0.6303± 0.0542 2.04e-13
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scRNA-seq hydra Cell-type hierarchies built by the greedy-search-based ITCA

Left: greedy-search-based ITCA; Right: hierarchical clustering
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Conclusion and discussion

• A principled criterion ITCA guides the combination of ambiguous outcome labels

• Extensive simulation studies verify the effectiveness of ITCA

• Multiple real-world applications demonstrate the application potential of ITCA

• Future: use ITCA to help determine the number of clusters
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Appendix



Censored cross entropy (CCE)

The commonly used loss function for NN is the cross entropy (CE):

CE = −
K∑
i=1

I (Yi = k) log[ϕ(Xi )]k ,

is not suitable for censored data. We propose the censored cross entropy (CCE):

CCE = −
K∑

k=1

Oi I (Yi = k) log[ϕ(Xi )]k

−(1− Oi )
∑
k>Yi

pk
1−

∑
l≤Yi

pl
log[ϕ(Xi )]k ,

where Oi is binary and Oi = 0 indicates that the data is right censored.
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CCE improves the accuracy

Performance of neural networks with CCE and CE as the loss functions, respectively.
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When should we combine two classes i and j?

Assumption (property of the classifier)

Considering a class combination πK−1 that only combines two class labels i and j,
classifiers ϕC,Dt

πK and ϕC,Dt
πK−1 satisfies∑

k∈[K ]\{i,j}

[−IP(πK (Y ) = k) log IP(πK (Y ) = k)] · IP(ϕC,Dt
πK0

(X ) = πK (Y )|πK (Y ) = k) ≥

∑
k∈[K ]\{i,j}

[−IP(πK−1(Y ) = k) log IP(πK−1(Y ) = k)] · IP(ϕC,Dt
πK−1

(X ) = πK−1(Y )|πK−1(Y ) = k)

The property holds if ϕ is oracle. It also holds if ϕ is constructed from one-vs-all

classifiers
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Prune search space by combination criteria

Proposition (class combination criterion)
If Assumption 1 holds, class i and j will be combined by p-ITCA if and only if:

IP(ϕC,Dt
πK−1

(X ) = πk−1(Y )|Y ∈ {i , j}) ≥
pi log pi IP(ϕ

C,Dt
πK

(X ) = Y |Y = i) + pj log pj IP(ϕ
C,Dt
πK

(X ) = Y |Y = j)

(pi + pj) log(pi + pj)

• RHS ≥ 1, p-ITCA cannot be improved by combing classes

• The combination criterion help prune the search space

• If pi + pj = 1 (there are only two classes), we should not combine the two classes
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