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Background

e Outcome labeling ambiguity and subjectiveness are ubiquitous

— Common in biomedical applications, e.g., disease diagnosis/prognosis
— Data are inherently noisy

— Labels may be mislabeled or labeled inconsistently by different graders [KGR*18]

e Ambiguous outcome labels would inevitably deteriorate prediction accuracy
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e Case: Train a classifier on partial /low-quality data annotated with
full /high-quality data.

e Problem: Uncertainty about whether the available information can sufficiently
predict classes.
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An ad hoc solution: combining ambiguous outcome labels

Boost accuracy by combining ambiguous outcome labels

e Class combination mk: [Kg] — [K] where K < Kp
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e Given the training data D, a classification algorithm C,
and a class combination 7k, denote the trained
classifier by qfr’KD*

Problems:
e Loosing prediction resolution

e Ad hoc, lacking a principled method



Trade-off between classification accuracy and resolution

Classification accuracy can be boosted at the cost of loosing prediction resolution

— Combining all outcome labels into one, we obtain a 100% accurate classifier

A principled method is called to balance the trade-off:

— How to characterize the “resolution”?

— How to properly balance the accuracy and resolution?

We proposed a criterion to guide class combination from an information-theoretic
perspective



Observation: entropy of outcome label distribution characterizes the resolution
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Information-theoretic classification accuracy (ITCA)

Definition of ITCA
Given class combination 7k, training data Dy, evaluation data D, and classification
algorithm C = classifier ¢g;?*

Pk, := I(Y; = ko)/n indicates the proportion of kp-th original class in D; U D,
ITCA(7k; Dy, De, C)
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in the combined class k

e ITCA is entropy-weighted out-of-sample prediction accuracy
e ITCA is also a class-accuracy-weighted entropy



Exhaustive search is prohibitive even Kj is moderate

Table 1: The number of allowed class combinations 7's given Ky

Label Ko
Type 2 4 6 38 12 16

Nominal 1 14 202 4139 4213596 ~ 10%°
Ordinal 1 7 31 127 2047 32767

Two heuristic search strategies

e Greedy search: starting from 7k, in the k-th round, find the best combination
among the allowed 7k _'s that maximizes the ITCA

e Breadth-first search: track all the combination that can improve ITCA at each
round



Alternative criteria that may guide class combination

Adjusted accuracy (AAC)
) 1 (¢57(X) = m(Y)

De| 2 2 b

Combined Kullback-Leibler divergence (CKL)

AAC :=

(Xi,Yi)EDe _‘k“;T/<l(7*‘(Y‘))

Commonly used criteria
CKL := Dt (Fp | .. D) + DKL( I Fp) e Accuracy (ACC)
Prediction entropy (PE) Classification

e e Mutual Information
PE := Z — (M) Clustering
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Simulation studies




ITCA finds the true class combination with a clear gap (simulated data)
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Simulated data with Ky = 6 observed classes; K* = 5 true classes; C = LDA
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ITCA finds the true class combination with a clear gap (the Iris data)
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K* = 3 classes (setosa, versicolor, and virginica); the setosa class is linearly separable from the

other two classes; Ky = 4 (the setosa class is randomly split into two equal-sized classes)
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ITCA finds the true combination at the most cases

# successes  Average Max # successes  Average Max
Crzeiion # datasets Hamming Hamming # datasets Hamming Hamming
LDA RF
ACC 6/127 2.54 6 7/127 2.53 6
Ml 7/127 251 6 11/127 2.33 6
AAC 15/127 2.02 6 15/127 1.98 6
CKL 3/127 3.68 6 5/127 2.87 5
PE 101/127 0.47 4 94/127 0.46 3
ITCA 120/127 0.12 3 120/127 0.08 2

Table 2: The performance of six criteria on the 127 simulated datasets with Ko = 8
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Effectiveness of the greedy and BFS search strategies

# successes  Average Max Average # class
Strategy -

# datasets Hamming Hamming combinations examined
Exhaustive 120/127 0.13 3 127.00
Greedy search 119/127 0.12 3 22.64
BFS 119/127 0.10 2 53.98
Greedy (pruned)  119/127 0.10 2 12.01
BFS (pruned) 119/127 0.10 3 27.41

Table 3: Performance of ITCA using five search strategies and LDA on the 127 simulated
datasets with Ky = 8. ITCA failed in seven cases where K« = 2 and | will give a theoretical
explanation later.
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Using clustering algorithms to guide class combination

While ITCA provides a powerful data-driven approach for combining ambiguous

classes, one may consider using a clustering algorithm

e /K{-means-based class combination: compute the kp-th class center
O-P I(Yi = ko) Xi) /(D21 I(Y; = ko)); use the K-means clustering to cluster
the Ky class centers into K™* clusters

e Spectral-clustering-based class combination: compute the K*-dimensional
spectral embeddings of Xi,..., X,; apply the K-means-based class combination
approach

e Hierarchical-clustering-based class combination: compute the Kj class

centers; apply the hierarchical clustering to the centers

For all clustering-based class combination approaches, K* must be predefined
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outperforms clustering-based class combination approaches
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Only ITCA (C = Gaussian kernel SVM) finds the true combination in all cases
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Some theoretic remarks




Population-level ITCA (p-ITCA)

We define the population—level ITCA (p-ITCA) of m as

p-ITCA(7k; Dy, C Z[ P(mk(Y) = k) log P(mk (Y) = k)] P(¢5.P(X) = 7k (Y) |7k (Y) = k)

Definition (oracle cIaSS|f|er)
Given Kj observed classes, let S C [Ko] be a set of classes that share the same

distribution. A classifier gb;‘% is an oracle classifier if that for any (Xj, Y;) where
Y; €S, qb;‘rKo predicts the label s € S by Multi(1, [|S|], [ps/ D _scs Ps])

Definition (class-combination curve)
Ko > 2, there exist two classes S = {1,2} that follow the same distribution. The other

classes’ distributions are different from S. 7k,_1 only combines class 1 and 2 into one
class

Clmky—1l|Tko: D, C) == {(p1, p2) € Q: p-ITCA(7ky; Dt,C, p1, p2) = p-ITCA(7k,—1; D¢, C, p1, P2) }

. . . 17
is the class-combination curve



Different classification algorithms induce different CC-curves

Oracle LDA
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Blue area means that p-ITCA increase after combination (orange means decrease), purple
indicates the boundary.
e p-ITCA will not combine classes 1 and 2 when the proportions of the combined
class is large

e LDA has a much smaller chance to discover the true class combination
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Enhance the ability of LDA to discover the true combination
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Soft assigns label to X randomly

with a multinomial distribution
Mult(1, softmax(d)) where § is the
decision score where delta is the
decision score § = (01, ,0k)

e We can show that Soft LDA
is the same as the oracle
classification algorithm when
llul/o® = o0
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The choice of classification algorithm

ITCA is adaptive to all classification algorithms

ITCA is comparable across different classification algorithms

Users can choose the most suitable classification algorithms for different tasks

Prediction: a strong classification algorithm that maximizes ITCA

Detection of similar classes: a weak classification algorithm (e.g., LDA)
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Applications




ITCA refines prognosis of rehabilitation outcomes of TBI patients

e Rehabilitation outcomes of traumatic brain injury (TBI) patients is costly

e Predict rehabilitation outcomes (17 FIMs, each is a Ky = 7 level outcome) for
individual patients from their admission features

e The prediction accuracy of the trained classifier (C = RF) on the original data is
relatively low
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Experts’ suggestion vs. ITCA guided class combination
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ITCA consistently leads to more balanced levels and a more significant improvement from

the best guess (assigning every patient to the level that has the most patients)
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ITCA induces multi-layer prediction frameworks

For each K = 1,..., Ky, choose the combination 7k that maximizes the ITCA

e Nested-search-based: classes in each layer are combined from the classes in the
layer below
e Exhaustive-search-based: no nested constraint

Greedy-search-based * s-ITCA guided combination Exhaustive-
- - = Ul I |
y g search-based
(1,2,3,4,5,6,7) {(1,2,3,4,5,6,7)} Layer 1 {(1,2,3,4,5,6,7)}
.4.56.7) {(1,2),(3,4,5,6,7)} Layer 2 {(1,2,3,4),(5,6,7)}
(3,4,5) {1, 2), (3,4,5), (6, )} Layer 3 {1,(2,3,4), (56, 7)}
(1,2) {1, 2), (3, 4), 5, (6, )} Layer 4 (@, 2), (3,4), 5, (6, )}
(6, 7) {1,2,(3,4),5, (6,7} J * Layer5 x| {1,2,(3,4),5 (6 7)}
(3./4) {1,2,(3,4),5,6,7} Layer 6 {1,2,(3,4),5,6,7}

Layer 7 (.234567)

23



ITCA boosts the prediction of glioblastoma cancer patients’ survival time

-=- sITCA

Glioblastoma cancer is one of the most aggressive I S

+- ACC

cancer types

e Task: Predict patients’ survival time

s-ITCA
Kendall's tau

e Approach 1: survival analysis (Cox regression)

e Approach 2: discretize survival time s e o
(classification) " , Lo
— Challenge: How to define survival time otk o
intervals? ITCA (C = NN) vs. ACC vs.
— Solution: Discretize survival time into small Kendall's tau

intervals and combine them with ITCA
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ITCA-guided classification model achieves the best performance

e We use a 3 layered neural network (NN) or logistic regression (LR) with a
modified cross entropy loss function for censored data

e Kp=12
e ITCA finds K =7 for LR and NN (with different mx's)

Model ITCA Kendall's tau p-value
NN (Ko survival time intervals) 0.8565 4+ 0.0410  0.6547 £0.0181  2.11e-14
LR (Ko survival time intervals) 0.6354 =0.0620  0.6024 £0.0244  1.64e-11

NN (ITCA-guided combined intervals) 0.9623 +0.0464 0.6855+0.0178 1.27e-15
LR (ITCA-guided combined intervals) ~ 0.8196 +0.0222  0.6236 4 0.0240  5.34e-10
Cox regression (risk scores) - 0.6303 £ 0.0542  2.04e-13
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scRNA-seq hydra Cell-type hierarchies built by the greedy-search-based ITCA
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Conclusion and discussion

A principled criterion ITCA guides the combination of ambiguous outcome labels

Extensive simulation studies verify the effectiveness of ITCA

Multiple real-world applications demonstrate the application potential of ITCA

Future: use ITCA to help determine the number of clusters
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Appendix




Censored cross entropy (CCE)

The commonly used loss function for NN is the cross entropy (CE):

CE:—Z/(Y k) log[&(Xi)l«,

is not suitable for censored data. We propose the censored cross entropy (CCE):

CCE=— ZO/ = k) log[o( X))«

iz Z/<v log[¢(Xi)]«

k>Y;

where O; is binary and O; = 0 indicates that the data is right censored.
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CCE improves the accuracy
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Performance of neural networks with CCE and CE as the loss functions, respectively.
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When should we combine two classes i and ;?

Assumption (property of the classifier)

Considering a class combination mx_1 that only combines two class labels i and j,
classifiers ¢§;(Df and (bfr;?_’l satisfies

Y

Y [FP(rk(Y) = k)log P(m(Y) = k)] - P($5,2(X) = m (Y) |k (Y) = k)
ke[KI\{iJj}

Y [FP(mk-1(Y) = k) log P(mk—1(Y) = k)] - (65,7 (X) = mic—1(Y)lmk—1(Y) = k)
kelKI\{id}

The property holds if ¢ is oracle. It also holds if ¢ is constructed from one-vs-all
classifiers
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Prune search space by combination criteria

Proposition (class combination criterion)
If Assumption 1 holds, class i and j will be combined by p-ITCA if and only if:

P57 (X) = o (VIY € {i,j}) >
pilog pilP(¢%:P1(X) = Y|Y = i) + pjlog pjIP(¢SP(X) = Y|Y = j)
(pi + p;) log(pi + pj)

e RHS > 1, p-ITCA cannot be improved by combing classes
e The combination criterion help prune the search space

o If pj+ pj =1 (there are only two classes), we should not combine the two classes
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