# Information-theoretic Classification Accuracy: A Criterion that Guides Data-driven Combination of Ambiguous Outcome Labels in Multi-class Classification

Shandong Mathematical Society Annual Academic Conference

Chihao Zhang

Janary 4, 2025

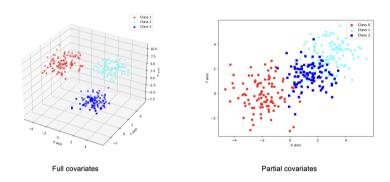
Acamdemy of Mathmatics and Systems Science, CAS

# **Background**

- Outcome labeling ambiguity and subjectiveness are ubiquitous
  - Common in biomedical applications, e.g., disease diagnosis/prognosis
  - Data are inherently noisy
  - Labels may be mislabeled or labeled inconsistently by different graders [KGR<sup>+</sup>18]

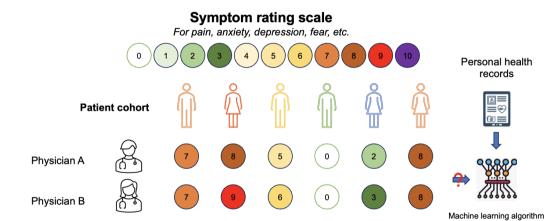
• Ambiguous outcome labels would inevitably deteriorate prediction accuracy

# Motivation example I



- Case: Train a classifier on partial/low-quality data annotated with full/high-quality data.
- Problem: Uncertainty about whether the available information can sufficiently predict classes.

# Motivating example II



# Motivating example II

Physician A

Physician B

# Symptom rating scale For pain, anxiety, depression, fear, etc. Personal health records Machine learning algorithm

Ambiguous labels

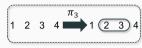
Patient cohort

4

# An ad hoc solution: combining ambiguous outcome labels

#### Boost accuracy by combining ambiguous outcome labels

• Class combination  $\pi_K$ :  $[K_0] \rightarrow [K]$  where  $K < K_0$ 



example of  $\pi_K$ 

$$\pi_3^{-1}(1) = \{1\}, \ \pi_3^{-1}(2) = \{2,3\}, \ \pi_3^{-1}(3) = \{4\}$$

• Given the training data  $\mathcal{D}_t$ , a classification algorithm  $\mathcal{C}_t$ , and a class combination  $\pi_K$ , denote the trained classifier by  $\phi_{\pi_k}^{\mathcal{C},\mathcal{D}_t}$ 



- Loosing prediction resolution
- Ad hoc, lacking a principled method



# Trade-off between classification accuracy and resolution

Classification accuracy can be boosted at the cost of loosing prediction resolution

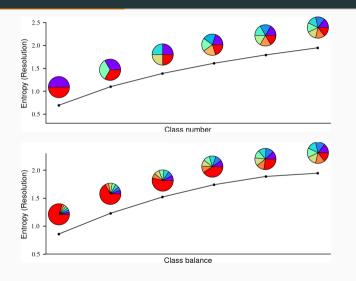
- Combining all outcome labels into one, we obtain a 100% accurate classifier

A **principled** method is called to balance the trade-off:

- How to characterize the "resolution"?
- How to properly balance the accuracy and resolution?

We proposed a criterion to guide class combination from an information-theoretic perspective

# Observation: entropy of outcome label distribution characterizes the resolution



For balanced classes: the larger the class number, the higher the resolution

Given the number of classes: the more balanced, the higher the resolution

# Information-theoretic classification accuracy (ITCA)

#### **Definition of ITCA**

Given class combination  $\pi_K$ , training data  $\mathcal{D}_t$ , evaluation data  $\mathcal{D}_e$ , and classification algorithm  $\mathcal{C} \Longrightarrow$  classifier  $\phi_{\pi_K}^{\mathcal{C},\mathcal{D}_t}$ 

 $\hat{
ho}_{k_0}:=\mathbb{I}(Y_i=k_0)/n$  indicates the proportion of  $k_0$ -th original class in  $\mathcal{D}_t\cup\mathcal{D}_e$ 

$$\mathsf{ITCA}(\pi_K; \mathcal{D}_t, \mathcal{D}_e, \mathcal{C})$$

$$:= \sum_{k=1}^{K} \left[ -\left( \sum_{k_0 \in \pi_K^{-1}(k)} \hat{\rho}_{k_0} \right) \log \left( \sum_{k_0 \in \pi_K^{-1}(k)} \hat{\rho}_{k_0} \right) \right] \cdot \frac{\sum_{(\mathbf{X}_i, Y_i) \in \mathcal{D}_e} \mathbb{I}(\phi_{\pi_K}^{\mathcal{C}, \mathcal{D}_t}(\mathbf{X}_i) = k, \, \pi_K(Y_i) = k)}{1 \bigvee \sum_{(\mathbf{X}_i, Y_i) \in \mathcal{D}_e} \mathbb{I}(\pi_K(Y_i) = k)},$$
contribution of the combined class  $k$ 

to the entropy of  $\pi_K(Y)$ 

conditional accuracy of  $\phi_{\pi_K}^{\mathcal{C},\mathcal{D}_t}$  in the combined class k

- ITCA is entropy-weighted out-of-sample prediction accuracy
- ITCA is also a class-accuracy-weighted entropy

# Exhaustive search is prohibitive even $K_0$ is moderate

**Table 1:** The number of allowed class combinations  $\pi_K$ 's given  $K_0$ 

| Label   | $\kappa_0$ |    |     |      |         |                |
|---------|------------|----|-----|------|---------|----------------|
| Type    | 2          | 4  | 6   | 8    | 12      | 16             |
| Nominal | 1          | 14 | 202 | 4139 | 4213596 | $\sim 10^{10}$ |
| Ordinal | 1          | 7  | 31  | 127  | 2047    | 32767          |

#### Two heuristic search strategies

- Greedy search: starting from  $\pi_{K_0}$ , in the k-th round, find the best combination among the allowed  $\pi_{K-k}$ 's that maximizes the ITCA
- Breadth-first search: track all the combination that can improve ITCA at each round

# Alternative criteria that may guide class combination

#### Adjusted accuracy (AAC)

$$\mathsf{AAC} := \frac{1}{|\mathcal{D}_e|} \sum_{(\boldsymbol{X}_i, Y_i) \in \mathcal{D}_e} \frac{\mathbb{I}\left(\phi_{\pi_K}^{\mathcal{C}, \mathcal{D}_t'}(\boldsymbol{X}_i) = \pi_K(Y_i)\right)}{\sum_{k_0 \in \pi_K^{-1}(\pi_K(Y_i))} \hat{\boldsymbol{p}}_{k_0}}$$

# Combined Kullback-Leibler divergence (CKL)

$$\begin{array}{l} \mathsf{CKL} := D_{\mathsf{KL}} \left( \widehat{F}_{\pi_K, \mathcal{D}_e} \mid\mid \widehat{F}_{\pi_{K_0}, \mathcal{D}_e} \right) + D_{\mathsf{KL}} \left( \widehat{F}_{\phi_{\pi_K}^{\mathcal{C}, \mathcal{D}_t}, \mathcal{D}_e} \mid\mid \widehat{F}_{\pi_K, \mathcal{D}_e} \right) \\ \textbf{Prediction entropy} \left( \mathbf{PE} \right) \end{array}$$

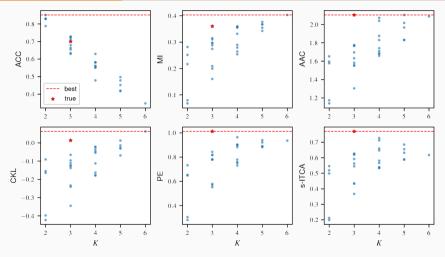
$$\mathsf{PE} := \sum_{k=1}^{K} - \frac{\sum\limits_{(\boldsymbol{X}_i, Y_i) \in \mathcal{D}_e} \mathbb{I}\left(\phi_{\pi_K}^{\mathcal{C}, \mathcal{D}_t}(\boldsymbol{X}_i) = \pi_K(Y_i) = k\right)}{|\mathcal{D}_e|} \\ \cdot \log \left(\frac{\sum\limits_{(\boldsymbol{X}_i, Y_i) \in \mathcal{D}_e} \mathbb{I}\left(\phi_{\pi_K}^{\mathcal{C}, \mathcal{D}_t}(\boldsymbol{X}_i) = \pi_K(Y_i) = k\right)}{|\mathcal{D}_e|}\right)$$

#### Commonly used criteria

- Accuracy (ACC)
   Classification
- Mutual Information (MI) Clustering

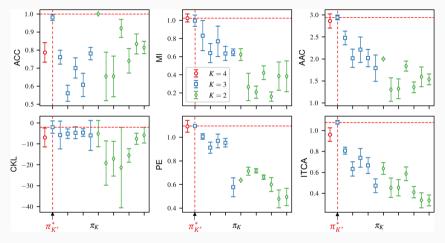
# Simulation studies

# ITCA finds the true class combination with a clear gap (simulated data)



Simulated data with  $K_0=6$  observed classes;  $K^*=5$  true classes;  $C=\mathsf{LDA}$ 

# ITCA finds the true class combination with a clear gap (the Iris data)



 $K^*=3$  classes (setosa, versicolor, and virginica); the setosa class is linearly separable from the other two classes;  $K_0=4$  (the setosa class is randomly split into two equal-sized classes)

#### ITCA finds the true combination at the most cases

|           | # successes | Average | Max     | # successes | Average | Max     |
|-----------|-------------|---------|---------|-------------|---------|---------|
| Criterion | # datasets  | Hamming | Hamming | # datasets  | Hamming | Hamming |
|           |             | LDA     |         |             | RF      |         |
| ACC       | 6/127       | 2.54    | 6       | 7/127       | 2.53    | 6       |
| MI        | 7/127       | 2.51    | 6       | 11/127      | 2.33    | 6       |
| AAC       | 15/127      | 2.02    | 6       | 15/127      | 1.98    | 6       |
| CKL       | 3/127       | 3.68    | 6       | 5/127       | 2.87    | 5       |
| PE        | 101/127     | 0.47    | 4       | 94/127      | 0.46    | 3       |
| ITCA      | 120/127     | 0.12    | 3       | 120/127     | 0.08    | 2       |

**Table 2:** The performance of six criteria on the 127 simulated datasets with  $K_0=8$ 

# Effectiveness of the greedy and BFS search strategies

| Strategy        | # successes | Average | Max     | Average # class       |
|-----------------|-------------|---------|---------|-----------------------|
| Strategy        | # datasets  | Hamming | Hamming | combinations examined |
| Exhaustive      | 120/127     | 0.13    | 3       | 127.00                |
| Greedy search   | 119/127     | 0.12    | 3       | 22.64                 |
| BFS             | 119/127     | 0.10    | 2       | 53.98                 |
| Greedy (pruned) | 119/127     | 0.10    | 2       | 12.01                 |
| BFS (pruned)    | 119/127     | 0.10    | 3       | 27.41                 |

**Table 3:** Performance of ITCA using five search strategies and LDA on the 127 simulated datasets with  $K_0 = 8$ . ITCA failed in seven cases where K\* = 2 and I will give a theoretical explanation later.

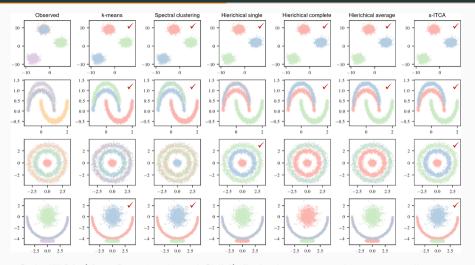
# Using clustering algorithms to guide class combination

While ITCA provides a powerful data-driven approach for combining ambiguous classes, one may consider using a clustering algorithm

- K-means-based class combination: compute the  $k_0$ -th class center  $(\sum_{i=1}^n \mathbb{I}(Y_i = k_0) \mathbf{X}_i) / (\sum_{i=1}^n \mathbb{I}(Y_i = k_0))$ ; use the K-means clustering to cluster the  $K_0$  class centers into  $K^*$  clusters
- Spectral-clustering-based class combination: compute the  $K^*$ -dimensional spectral embeddings of  $X_1, \ldots, X_n$ ; apply the K-means-based class combination approach
- Hierarchical-clustering-based class combination: compute the  $K_0$  class centers; apply the hierarchical clustering to the centers

For all clustering-based class combination approaches,  $K^*$  must be predefined

### ITCA outperforms clustering-based class combination approaches



Only ITCA ( $\mathcal{C}=$  Gaussian kernel SVM) finds the true combination in all cases

# Some theoretic remarks

# Population-level ITCA (p-ITCA)

We define the population-level ITCA (p-ITCA) of  $\pi_K$  as

$$\operatorname{p-ITCA}(\pi_K; \mathcal{D}_t, \mathcal{C}) := \sum_{k=1}^K [-\mathbb{P}(\pi_K(Y) = k) \log \mathbb{P}(\pi_K(Y) = k)] \cdot \mathbb{P}(\phi_{\pi_K}^{\mathcal{C}, \mathcal{D}_t}(\boldsymbol{X}) = \pi_K(Y) | \pi_K(Y) = k)$$

#### **Definition** (oracle classifier)

Given  $K_0$  observed classes, let  $S \subseteq [K_0]$  be a set of classes that share the same distribution. A classifier  $\phi_{\pi_{K_0}}^*$  is an oracle classifier if that for any  $(X_i, Y_i)$  where  $Y_i \in S$ ,  $\phi_{\pi_{K_0}}^*$  predicts the label  $s \in S$  by  $\text{Multi}(1, [|S|], [p_s/\sum_{s \in S} p_s])$ 

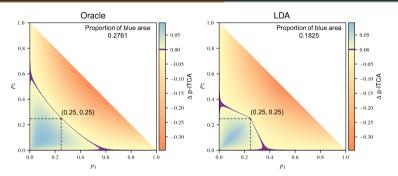
#### **Definition (class-combination curve)**

 $K_0 > 2$ , there exist two classes  $S = \{1,2\}$  that follow the same distribution. The other classes' distributions are different from S.  $\pi_{K_0-1}$  only combines class 1 and 2 into one class

$$\mathsf{CC}(\pi_{K_0-1}||\pi_{K_0};\mathcal{D}_t,\mathcal{C}) := \{(p_1,p_2) \in \Omega : \mathsf{p-ITCA}(\pi_{K_0};\mathcal{D}_t,\mathcal{C},p_1,p_2) = \mathsf{p-ITCA}(\pi_{K_0-1};\mathcal{D}_t,\mathcal{C},p_1,p_2)\}$$

is the class-combination curve

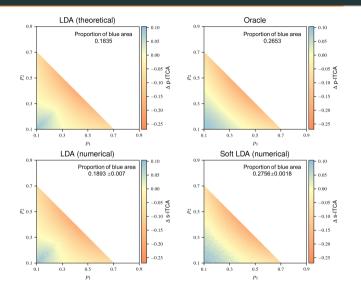
# Different classification algorithms induce different CC-curves



Blue area means that p-ITCA increase after combination (orange means decrease), purple indicates the boundary.

- p-ITCA will not combine classes 1 and 2 when the proportions of the combined class is large
- LDA has a much smaller chance to discover the true class combination

# Enhance the ability of LDA to discover the true combination



#### Soft LDA

Soft assigns label to  $\boldsymbol{X}$  randomly with a multinomial distribution Mult(1, softmax( $\delta$ )) where  $\delta$  is the decision score where delta is the decision score  $\delta = (\delta_1, \cdots, \delta_K)$ 

• We can show that Soft LDA is the same as the oracle classification algorithm when  $||\mu||/\sigma^2 \to \infty$ 

# The choice of classification algorithm

ITCA is adaptive to all classification algorithms

ITCA is comparable across different classification algorithms

- Users can choose the most suitable classification algorithms for different tasks
- Prediction: a strong classification algorithm that maximizes ITCA
- Detection of similar classes: a weak classification algorithm (e.g., LDA)

# **Applications**

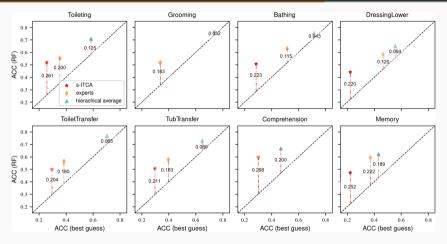
# ITCA refines prognosis of rehabilitation outcomes of TBI patients

• Rehabilitation outcomes of traumatic brain injury (TBI) patients is costly

• Predict rehabilitation outcomes (17 FIMs, each is a  $K_0 = 7$  level outcome) for individual patients from their admission features

ullet The prediction accuracy of the trained classifier ( ${\cal C}={\sf RF})$  on the original data is relatively low

# Experts' suggestion vs. ITCA guided class combination

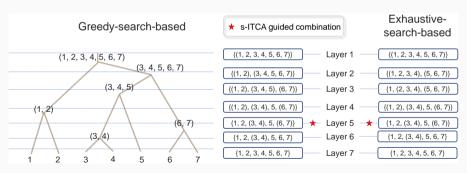


ITCA consistently leads to more balanced levels and a more significant improvement from the best guess (assigning every patient to the level that has the most patients)

# ITCA induces multi-layer prediction frameworks

For each  $K=1,\ldots,K_0$ , choose the combination  $\pi_K$  that maximizes the ITCA

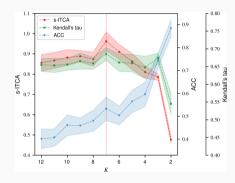
- Nested-search-based: classes in each layer are combined from the classes in the layer below
- Exhaustive-search-based: no nested constraint



# ITCA boosts the prediction of glioblastoma cancer patients' survival time

Glioblastoma cancer is one of the most aggressive cancer types

- Task: Predict patients' survival time
- Approach 1: survival analysis (Cox regression)
- Approach 2: discretize survival time (classification)
  - Challenge: How to define survival time intervals?
  - Solution: Discretize survival time into small intervals and combine them with ITCA



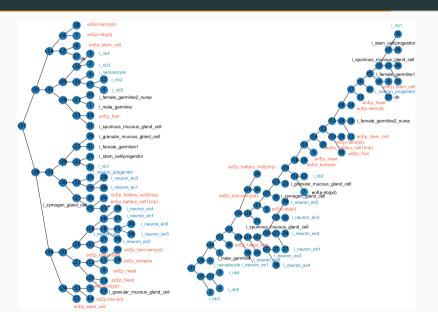
ITCA ( $\mathcal{C} = NN$ ) vs. ACC vs. Kendall's tau

# ITCA-guided classification model achieves the best performance

- We use a 3 layered neural network (NN) or logistic regression (LR) with a modified cross entropy loss function for censored data
- $K_0 = 12$
- ITCA finds K = 7 for LR and NN (with different  $\pi_K$ 's)

| Model                               | ITCA                | Kendall's tau       | p-value  |
|-------------------------------------|---------------------|---------------------|----------|
| NN ( $K_0$ survival time intervals) | $0.8565 \pm 0.0410$ | $0.6547 \pm 0.0181$ | 2.11e-14 |
| LR ( $K_0$ survival time intervals) | $0.6354 \pm 0.0620$ | $0.6024 \pm 0.0244$ | 1.64e-11 |
| NN (ITCA-guided combined intervals) | $0.9623 \pm 0.0464$ | $0.6855 \pm 0.0178$ | 1.27e-15 |
| LR (ITCA-guided combined intervals) | $0.8196 \pm 0.0222$ | $0.6236 \pm 0.0240$ | 5.34e-10 |
| Cox regression (risk scores)        | -                   | $0.6303 \pm 0.0542$ | 2.04e-13 |

# scRNA-seq hydra Cell-type hierarchies built by the greedy-search-based ITCA



#### **Conclusion and discussion**

• A principled criterion ITCA guides the combination of ambiguous outcome labels

• Extensive simulation studies verify the effectiveness of ITCA

• Multiple real-world applications demonstrate the application potential of ITCA

• Future: use ITCA to help determine the number of clusters

# Acknowledgements

- Prof. Jingyi Jessica Li, UCLA
- Prof. Shihua Zhang, AMSS
- Dr. Yiling Elaine Chen, UCLA

#### Publication

```
Journal of Machine Learning Research, 2022
https://www.jmlr.org/papers/v23/21-1150.html
Journal of Computational Biology, 2023
https://doi.org/10.1089/cmb.2023.0191
```

• Software - https://github.com/JSB-UCLA/ITCA >>> pip install itca

#### References i



Jonathan Krause, Varun Gulshan, Ehsan Rahimy, Peter Karth, Kasumi Widner, Greg S Corrado, Lily Peng, and Dale R Webster, *Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy*, Ophthalmology **125** (2018), no. 8, 1264–1272.

# Appendix

# Censored cross entropy (CCE)

The commonly used loss function for NN is the cross entropy (CE):

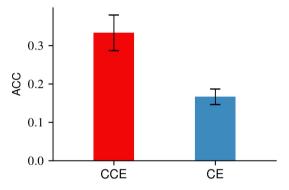
$$\mathsf{CE} = -\sum_{i=1}^K I(Y_i = k) \log[\phi(X_i)]_k,$$

is not suitable for censored data. We propose the censored cross entropy (CCE):

$$\begin{aligned} \mathsf{CCE} &= -\sum_{k=1}^K O_i I(Y_i = k) \log[\phi(X_i)]_k \\ -(1 - O_i) \sum_{k > Y_i} \frac{p_k}{1 - \sum_{l \le Y_i} p_l} \log[\phi(X_i)]_k, \end{aligned}$$

where  $O_i$  is binary and  $O_i = 0$  indicates that the data is right censored.

# **CCE** improves the accuracy



Performance of neural networks with CCE and CE as the loss functions, respectively.

# When should we combine two classes i and j?

# Assumption (property of the classifier)

Considering a class combination  $\pi_{K-1}$  that only combines two class labels i and j, classifiers  $\phi_{\pi_K}^{\mathcal{C},\mathcal{D}_t}$  and  $\phi_{\pi_{K-1}}^{\mathcal{C},\mathcal{D}_t}$  satisfies

$$\sum_{k \in [K] \setminus \{i,j\}} [-\mathbb{P}(\pi_{K}(Y) = k) \log \mathbb{P}(\pi_{K}(Y) = k)] \cdot \mathbb{P}(\phi_{\pi_{K_{0}}}^{\mathcal{C}, \mathcal{D}_{t}}(\boldsymbol{X}) = \pi_{K}(Y) | \pi_{K}(Y) = k) \geq \sum_{k \in [K] \setminus \{i,j\}} [-\mathbb{P}(\pi_{K-1}(Y) = k) \log \mathbb{P}(\pi_{K-1}(Y) = k)] \cdot \mathbb{P}(\phi_{\pi_{K-1}}^{\mathcal{C}, \mathcal{D}_{t}}(\boldsymbol{X}) = \pi_{K-1}(Y) | \pi_{K-1}(Y) = k)$$

The property holds if  $\phi$  is oracle. It also holds if  $\phi$  is constructed from one-vs-all classifiers

# Prune search space by combination criteria

# Proposition (class combination criterion)

If Assumption 1 holds, class i and j will be combined by p-ITCA if and only if:

$$\mathbb{P}(\phi_{\pi_{K}-1}^{\mathcal{C},\mathcal{D}_{t}}(\boldsymbol{X}) = \pi_{k-1}(Y)|Y \in \{i,j\}) \geq \frac{p_{i} \log p_{i} \mathbb{P}(\phi_{\pi_{K}}^{\mathcal{C},\mathcal{D}_{t}}(\boldsymbol{X}) = Y|Y = i) + p_{j} \log p_{j} \mathbb{P}(\phi_{\pi_{K}}^{\mathcal{C},\mathcal{D}_{t}}(\boldsymbol{X}) = Y|Y = j)}{(p_{i} + p_{j}) \log(p_{i} + p_{j})}$$

- ullet RHS  $\geq$  1, p-ITCA cannot be improved by combing classes
- The combination criterion help prune the search space
- ullet If  $p_i+p_j=1$  (there are only two classes), we should not combine the two classes