Information-theoretic Classification Accuracy: A Criterion that Guides Data-driven Combination of Ambiguous Outcome Labels in Multi-class Classification

Shandong Mathematical Society Annual Academic Conference

Chihao Zhang

Janary 4, 2025

Acamdemy of Mathmatics and Systems Science, CAS

Background

- Outcome labeling ambiguity and subjectiveness are ubiquitous
 - Common in biomedical applications, e.g., disease diagnosis/prognosis
 - Data are inherently noisy
 - Labels may be mislabeled or labeled inconsistently by different graders [KGR⁺18]

• Ambiguous outcome labels would inevitably deteriorate prediction accuracy

Motivation example I

- Case: Train a classifier on partial/low-quality data annotated with full/high-quality data.
- Problem: Uncertainty about whether the available information can sufficiently predict classes.

Motivating example II

Motivating example II

Physician A

Physician B

Symptom rating scale For pain, anxiety, depression, fear, etc. Personal health records Machine learning algorithm

Ambiguous labels

Patient cohort

4

An ad hoc solution: combining ambiguous outcome labels

Boost accuracy by combining ambiguous outcome labels

• Class combination π_K : $[K_0] \rightarrow [K]$ where $K < K_0$

example of π_K

$$\pi_3^{-1}(1) = \{1\}, \ \pi_3^{-1}(2) = \{2,3\}, \ \pi_3^{-1}(3) = \{4\}$$

• Given the training data \mathcal{D}_t , a classification algorithm \mathcal{C}_t , and a class combination π_K , denote the trained classifier by $\phi_{\pi_k}^{\mathcal{C},\mathcal{D}_t}$

- Loosing prediction resolution
- Ad hoc, lacking a principled method

Trade-off between classification accuracy and resolution

Classification accuracy can be boosted at the cost of loosing prediction resolution

- Combining all outcome labels into one, we obtain a 100% accurate classifier

A **principled** method is called to balance the trade-off:

- How to characterize the "resolution"?
- How to properly balance the accuracy and resolution?

We proposed a criterion to guide class combination from an information-theoretic perspective

Observation: entropy of outcome label distribution characterizes the resolution

For balanced classes: the larger the class number, the higher the resolution

Given the number of classes: the more balanced, the higher the resolution

Information-theoretic classification accuracy (ITCA)

Definition of ITCA

Given class combination π_K , training data \mathcal{D}_t , evaluation data \mathcal{D}_e , and classification algorithm $\mathcal{C} \Longrightarrow$ classifier $\phi_{\pi_K}^{\mathcal{C},\mathcal{D}_t}$

 $\hat{
ho}_{k_0}:=\mathbb{I}(Y_i=k_0)/n$ indicates the proportion of k_0 -th original class in $\mathcal{D}_t\cup\mathcal{D}_e$

$$\mathsf{ITCA}(\pi_K; \mathcal{D}_t, \mathcal{D}_e, \mathcal{C})$$

$$:= \sum_{k=1}^{K} \left[-\left(\sum_{k_0 \in \pi_K^{-1}(k)} \hat{\rho}_{k_0} \right) \log \left(\sum_{k_0 \in \pi_K^{-1}(k)} \hat{\rho}_{k_0} \right) \right] \cdot \frac{\sum_{(\mathbf{X}_i, Y_i) \in \mathcal{D}_e} \mathbb{I}(\phi_{\pi_K}^{\mathcal{C}, \mathcal{D}_t}(\mathbf{X}_i) = k, \, \pi_K(Y_i) = k)}{1 \bigvee \sum_{(\mathbf{X}_i, Y_i) \in \mathcal{D}_e} \mathbb{I}(\pi_K(Y_i) = k)},$$
contribution of the combined class k

to the entropy of $\pi_K(Y)$

conditional accuracy of $\phi_{\pi_K}^{\mathcal{C},\mathcal{D}_t}$ in the combined class k

- ITCA is entropy-weighted out-of-sample prediction accuracy
- ITCA is also a class-accuracy-weighted entropy

Exhaustive search is prohibitive even K_0 is moderate

Table 1: The number of allowed class combinations π_K 's given K_0

Label	κ_0					
Type	2	4	6	8	12	16
Nominal	1	14	202	4139	4213596	$\sim 10^{10}$
Ordinal	1	7	31	127	2047	32767

Two heuristic search strategies

- Greedy search: starting from π_{K_0} , in the k-th round, find the best combination among the allowed π_{K-k} 's that maximizes the ITCA
- Breadth-first search: track all the combination that can improve ITCA at each round

Alternative criteria that may guide class combination

Adjusted accuracy (AAC)

$$\mathsf{AAC} := \frac{1}{|\mathcal{D}_e|} \sum_{(\boldsymbol{X}_i, Y_i) \in \mathcal{D}_e} \frac{\mathbb{I}\left(\phi_{\pi_K}^{\mathcal{C}, \mathcal{D}_t'}(\boldsymbol{X}_i) = \pi_K(Y_i)\right)}{\sum_{k_0 \in \pi_K^{-1}(\pi_K(Y_i))} \hat{\boldsymbol{p}}_{k_0}}$$

Combined Kullback-Leibler divergence (CKL)

$$\begin{array}{l} \mathsf{CKL} := D_{\mathsf{KL}} \left(\widehat{F}_{\pi_K, \mathcal{D}_e} \mid\mid \widehat{F}_{\pi_{K_0}, \mathcal{D}_e} \right) + D_{\mathsf{KL}} \left(\widehat{F}_{\phi_{\pi_K}^{\mathcal{C}, \mathcal{D}_t}, \mathcal{D}_e} \mid\mid \widehat{F}_{\pi_K, \mathcal{D}_e} \right) \\ \textbf{Prediction entropy} \left(\mathbf{PE} \right) \end{array}$$

$$\mathsf{PE} := \sum_{k=1}^{K} - \frac{\sum\limits_{(\boldsymbol{X}_i, Y_i) \in \mathcal{D}_e} \mathbb{I}\left(\phi_{\pi_K}^{\mathcal{C}, \mathcal{D}_t}(\boldsymbol{X}_i) = \pi_K(Y_i) = k\right)}{|\mathcal{D}_e|} \\ \cdot \log \left(\frac{\sum\limits_{(\boldsymbol{X}_i, Y_i) \in \mathcal{D}_e} \mathbb{I}\left(\phi_{\pi_K}^{\mathcal{C}, \mathcal{D}_t}(\boldsymbol{X}_i) = \pi_K(Y_i) = k\right)}{|\mathcal{D}_e|}\right)$$

Commonly used criteria

- Accuracy (ACC)
 Classification
- Mutual Information (MI) Clustering

Simulation studies

ITCA finds the true class combination with a clear gap (simulated data)

Simulated data with $K_0=6$ observed classes; $K^*=5$ true classes; $C=\mathsf{LDA}$

ITCA finds the true class combination with a clear gap (the Iris data)

 $K^*=3$ classes (setosa, versicolor, and virginica); the setosa class is linearly separable from the other two classes; $K_0=4$ (the setosa class is randomly split into two equal-sized classes)

ITCA finds the true combination at the most cases

	# successes	Average	Max	# successes	Average	Max
Criterion	# datasets	Hamming	Hamming	# datasets	Hamming	Hamming
		LDA			RF	
ACC	6/127	2.54	6	7/127	2.53	6
MI	7/127	2.51	6	11/127	2.33	6
AAC	15/127	2.02	6	15/127	1.98	6
CKL	3/127	3.68	6	5/127	2.87	5
PE	101/127	0.47	4	94/127	0.46	3
ITCA	120/127	0.12	3	120/127	0.08	2

Table 2: The performance of six criteria on the 127 simulated datasets with $K_0=8$

Effectiveness of the greedy and BFS search strategies

Strategy	# successes	Average	Max	Average # class
Strategy	# datasets	Hamming	Hamming	combinations examined
Exhaustive	120/127	0.13	3	127.00
Greedy search	119/127	0.12	3	22.64
BFS	119/127	0.10	2	53.98
Greedy (pruned)	119/127	0.10	2	12.01
BFS (pruned)	119/127	0.10	3	27.41

Table 3: Performance of ITCA using five search strategies and LDA on the 127 simulated datasets with $K_0 = 8$. ITCA failed in seven cases where K* = 2 and I will give a theoretical explanation later.

Using clustering algorithms to guide class combination

While ITCA provides a powerful data-driven approach for combining ambiguous classes, one may consider using a clustering algorithm

- K-means-based class combination: compute the k_0 -th class center $(\sum_{i=1}^n \mathbb{I}(Y_i = k_0) \mathbf{X}_i) / (\sum_{i=1}^n \mathbb{I}(Y_i = k_0))$; use the K-means clustering to cluster the K_0 class centers into K^* clusters
- Spectral-clustering-based class combination: compute the K^* -dimensional spectral embeddings of X_1, \ldots, X_n ; apply the K-means-based class combination approach
- Hierarchical-clustering-based class combination: compute the K_0 class centers; apply the hierarchical clustering to the centers

For all clustering-based class combination approaches, K^* must be predefined

ITCA outperforms clustering-based class combination approaches

Only ITCA ($\mathcal{C}=$ Gaussian kernel SVM) finds the true combination in all cases

Some theoretic remarks

Population-level ITCA (p-ITCA)

We define the population-level ITCA (p-ITCA) of π_K as

$$\operatorname{p-ITCA}(\pi_K; \mathcal{D}_t, \mathcal{C}) := \sum_{k=1}^K [-\mathbb{P}(\pi_K(Y) = k) \log \mathbb{P}(\pi_K(Y) = k)] \cdot \mathbb{P}(\phi_{\pi_K}^{\mathcal{C}, \mathcal{D}_t}(\boldsymbol{X}) = \pi_K(Y) | \pi_K(Y) = k)$$

Definition (oracle classifier)

Given K_0 observed classes, let $S \subseteq [K_0]$ be a set of classes that share the same distribution. A classifier $\phi_{\pi_{K_0}}^*$ is an oracle classifier if that for any (X_i, Y_i) where $Y_i \in S$, $\phi_{\pi_{K_0}}^*$ predicts the label $s \in S$ by $\text{Multi}(1, [|S|], [p_s/\sum_{s \in S} p_s])$

Definition (class-combination curve)

 $K_0 > 2$, there exist two classes $S = \{1,2\}$ that follow the same distribution. The other classes' distributions are different from S. π_{K_0-1} only combines class 1 and 2 into one class

$$\mathsf{CC}(\pi_{K_0-1}||\pi_{K_0};\mathcal{D}_t,\mathcal{C}) := \{(p_1,p_2) \in \Omega : \mathsf{p-ITCA}(\pi_{K_0};\mathcal{D}_t,\mathcal{C},p_1,p_2) = \mathsf{p-ITCA}(\pi_{K_0-1};\mathcal{D}_t,\mathcal{C},p_1,p_2)\}$$

is the class-combination curve

Different classification algorithms induce different CC-curves

Blue area means that p-ITCA increase after combination (orange means decrease), purple indicates the boundary.

- p-ITCA will not combine classes 1 and 2 when the proportions of the combined class is large
- LDA has a much smaller chance to discover the true class combination

Enhance the ability of LDA to discover the true combination

Soft LDA

Soft assigns label to \boldsymbol{X} randomly with a multinomial distribution Mult(1, softmax(δ)) where δ is the decision score where delta is the decision score $\delta = (\delta_1, \cdots, \delta_K)$

• We can show that Soft LDA is the same as the oracle classification algorithm when $||\mu||/\sigma^2 \to \infty$

The choice of classification algorithm

ITCA is adaptive to all classification algorithms

ITCA is comparable across different classification algorithms

- Users can choose the most suitable classification algorithms for different tasks
- Prediction: a strong classification algorithm that maximizes ITCA
- Detection of similar classes: a weak classification algorithm (e.g., LDA)

Applications

ITCA refines prognosis of rehabilitation outcomes of TBI patients

• Rehabilitation outcomes of traumatic brain injury (TBI) patients is costly

• Predict rehabilitation outcomes (17 FIMs, each is a $K_0 = 7$ level outcome) for individual patients from their admission features

ullet The prediction accuracy of the trained classifier (${\cal C}={\sf RF})$ on the original data is relatively low

Experts' suggestion vs. ITCA guided class combination

ITCA consistently leads to more balanced levels and a more significant improvement from the best guess (assigning every patient to the level that has the most patients)

ITCA induces multi-layer prediction frameworks

For each $K=1,\ldots,K_0$, choose the combination π_K that maximizes the ITCA

- Nested-search-based: classes in each layer are combined from the classes in the layer below
- Exhaustive-search-based: no nested constraint

ITCA boosts the prediction of glioblastoma cancer patients' survival time

Glioblastoma cancer is one of the most aggressive cancer types

- Task: Predict patients' survival time
- Approach 1: survival analysis (Cox regression)
- Approach 2: discretize survival time (classification)
 - Challenge: How to define survival time intervals?
 - Solution: Discretize survival time into small intervals and combine them with ITCA

ITCA ($\mathcal{C} = NN$) vs. ACC vs. Kendall's tau

ITCA-guided classification model achieves the best performance

- We use a 3 layered neural network (NN) or logistic regression (LR) with a modified cross entropy loss function for censored data
- $K_0 = 12$
- ITCA finds K = 7 for LR and NN (with different π_K 's)

Model	ITCA	Kendall's tau	p-value
NN (K_0 survival time intervals)	0.8565 ± 0.0410	0.6547 ± 0.0181	2.11e-14
LR (K_0 survival time intervals)	0.6354 ± 0.0620	0.6024 ± 0.0244	1.64e-11
NN (ITCA-guided combined intervals)	0.9623 ± 0.0464	0.6855 ± 0.0178	1.27e-15
LR (ITCA-guided combined intervals)	0.8196 ± 0.0222	0.6236 ± 0.0240	5.34e-10
Cox regression (risk scores)	-	0.6303 ± 0.0542	2.04e-13

scRNA-seq hydra Cell-type hierarchies built by the greedy-search-based ITCA

Conclusion and discussion

• A principled criterion ITCA guides the combination of ambiguous outcome labels

• Extensive simulation studies verify the effectiveness of ITCA

• Multiple real-world applications demonstrate the application potential of ITCA

• Future: use ITCA to help determine the number of clusters

Acknowledgements

- Prof. Jingyi Jessica Li, UCLA
- Prof. Shihua Zhang, AMSS
- Dr. Yiling Elaine Chen, UCLA

Publication

```
Journal of Machine Learning Research, 2022
https://www.jmlr.org/papers/v23/21-1150.html
Journal of Computational Biology, 2023
https://doi.org/10.1089/cmb.2023.0191
```

• Software - https://github.com/JSB-UCLA/ITCA >>> pip install itca

References i

Jonathan Krause, Varun Gulshan, Ehsan Rahimy, Peter Karth, Kasumi Widner, Greg S Corrado, Lily Peng, and Dale R Webster, *Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy*, Ophthalmology **125** (2018), no. 8, 1264–1272.

Appendix

Censored cross entropy (CCE)

The commonly used loss function for NN is the cross entropy (CE):

$$\mathsf{CE} = -\sum_{i=1}^K I(Y_i = k) \log[\phi(X_i)]_k,$$

is not suitable for censored data. We propose the censored cross entropy (CCE):

$$\begin{aligned} \mathsf{CCE} &= -\sum_{k=1}^K O_i I(Y_i = k) \log[\phi(X_i)]_k \\ -(1 - O_i) \sum_{k > Y_i} \frac{p_k}{1 - \sum_{l \le Y_i} p_l} \log[\phi(X_i)]_k, \end{aligned}$$

where O_i is binary and $O_i = 0$ indicates that the data is right censored.

CCE improves the accuracy

Performance of neural networks with CCE and CE as the loss functions, respectively.

When should we combine two classes i and j?

Assumption (property of the classifier)

Considering a class combination π_{K-1} that only combines two class labels i and j, classifiers $\phi_{\pi_K}^{\mathcal{C},\mathcal{D}_t}$ and $\phi_{\pi_{K-1}}^{\mathcal{C},\mathcal{D}_t}$ satisfies

$$\sum_{k \in [K] \setminus \{i,j\}} [-\mathbb{P}(\pi_{K}(Y) = k) \log \mathbb{P}(\pi_{K}(Y) = k)] \cdot \mathbb{P}(\phi_{\pi_{K_{0}}}^{\mathcal{C}, \mathcal{D}_{t}}(\boldsymbol{X}) = \pi_{K}(Y) | \pi_{K}(Y) = k) \geq \sum_{k \in [K] \setminus \{i,j\}} [-\mathbb{P}(\pi_{K-1}(Y) = k) \log \mathbb{P}(\pi_{K-1}(Y) = k)] \cdot \mathbb{P}(\phi_{\pi_{K-1}}^{\mathcal{C}, \mathcal{D}_{t}}(\boldsymbol{X}) = \pi_{K-1}(Y) | \pi_{K-1}(Y) = k)$$

The property holds if ϕ is oracle. It also holds if ϕ is constructed from one-vs-all classifiers

Prune search space by combination criteria

Proposition (class combination criterion)

If Assumption 1 holds, class i and j will be combined by p-ITCA if and only if:

$$\mathbb{P}(\phi_{\pi_{K}-1}^{\mathcal{C},\mathcal{D}_{t}}(\boldsymbol{X}) = \pi_{k-1}(Y)|Y \in \{i,j\}) \geq \frac{p_{i} \log p_{i} \mathbb{P}(\phi_{\pi_{K}}^{\mathcal{C},\mathcal{D}_{t}}(\boldsymbol{X}) = Y|Y = i) + p_{j} \log p_{j} \mathbb{P}(\phi_{\pi_{K}}^{\mathcal{C},\mathcal{D}_{t}}(\boldsymbol{X}) = Y|Y = j)}{(p_{i} + p_{j}) \log(p_{i} + p_{j})}$$

- ullet RHS \geq 1, p-ITCA cannot be improved by combing classes
- The combination criterion help prune the search space
- ullet If $p_i+p_j=1$ (there are only two classes), we should not combine the two classes